Correct use of Lorentz–Einstein transformation equations for electromagnetic fields
نویسنده
چکیده
There is a widespread belief that individual Lorentz–Einstein transformation equations have a physical significance of their own and can be used independently of each other. Thus, for example, some authors believe that for transforming the electric field of a parallel-plate capacitor or of a line charge from one reference frame to another it is sufficient to use only the charge-density transformation equation. Similarly, some authors believe that the same seemingly correct results can be obtained by using just the electric and magnetic field transformation equations. An analysis of field expressions obtained by means of such transformation methods shows, however, that these expressions are incorrect. In order to obtain correct expressions for electric and magnetic fields by means of Lorentz–Einstein transformation equations, the equations must be used collectively, so that all transformable quantities in the system under consideration are properly transformed. Zusammenfassung. Es wird gewöhnlich angenommen, daß einzelne Lorentz–Einsteinschen Transformationsgleichungen selbständige physikalische Bedeutungen haben und unabhängig voneinander gebraucht werden können. Zum Beispiel, einige Autoren glauben, daß um das elektrische Feld eines Plattenkondensators oder einer Linearladung von einem zum anderen Bezugssystem zu transformieren, genügt es die Transformationsgleichung für die Ladungsdichte allein zu benutzen. Gleichfalls, manche Autoren glauben, daß dieselbe scheinbar richtige Lösungen allein durch die Transformation von den elektrischen und magnetischen Feldern erhalten werden können. Eine Analyse der Feldgleichungen die mit solchen Transformationsmethoden erhalten sind zeigt dagegen, daß diese Feldgleichungen falsch sind. Um richtige Ausdrücke für elektrische und magnetische Felder mit der Hilfe von Lorentz–Einsteinschen Transformationsgleichungen zu erhalten, die Transformationsgleichungen müssen insgesamt angewandt werden, so daß alle transformierbare Größen im untersuchenden System gleichzeitig transformiert sind.
منابع مشابه
Trouble with the Lorentz law of force: incompatibility with special relativity and momentum conservation.
The Lorentz law of force is the fifth pillar of classical electrodynamics, the other four being Maxwell's macroscopic equations. The Lorentz law is the universal expression of the force exerted by electromagnetic fields on a volume containing a distribution of electrical charges and currents. If electric and magnetic dipoles also happen to be present in a material medium, they are traditionally...
متن کاملElementary Derivation of the Equivalence of Mass and Energy
The special theory of relativity grew out of the Maxwell electromagnetic equations. So it came about that even in the derivation of the mechanical concepts and their relations the consideration of those of the electromagnetic field has played an essential role. The question as to the independence of those relations is a natural one because the Lorentz transformation, the real basis of the speci...
متن کاملReconsidering a Scientific Revolution: The Case of Einstein ersus Lorentz
The relationship between Albert Einstein’s special theory of relativity and Hendrik A. Lorentz’s ether theory is best understood in terms of competing interpretations of Lorentz invariance. In the 1890s, Lorentz proved and exploited the Lorentz invariance of Maxwell’s equations, the laws governing electromagnetic fields in the ether, with what he called the theorem of corresponding states. To a...
متن کاملDuality in Gravity and Higher Spin Gauge Fields
Dual field theory realisations are given for linearised gravity in terms of gauge fields in exotic representations of the Lorentz group. The field equations and dual representations are discussed for a wide class of higher spin gauge fields. For non-linear Einstein gravity, such transformations can be implemented locally in light-cone gauge, or partially implemented in the presence of a Killing...
متن کاملRelativistic Formulation of Maxwell’s Equations for Free Space
Einstein assumed in his Special Theory of Relativity that Maxwell’s equations, including Faraday’s law and the AmpereMaxwell equation, were invariant in any inertial frame, and that the Lorentz transformation equations must be used when two inertial frames were in relative motion. Starting with a modification of the Ampere-Maxwell equation that allows for two observers of the magnetic field in ...
متن کامل